十国海光

第16卷 第6期

58≪Z≪71 类氖离子 2p⁵3l 能级的相对 论多组态 Dirac-Fock 计算

张同发 梁爱华 潘守甫 (吉林职业师范学院) (吉林大学原子与分子物理研究所)

Relativistic MCDF calculations of $2p^53l$ energy levels and transition wavelenths from Ne-like ions of $58 \le Z \le 71$

Zhang Tongfa (Vocational Teachers College of Jiliu, Changchun)

Liang Aihua, Pan Shoufu (Institute of Atomic and Molecular Physics, Jilin University, Changchun)

提要:本文用相对论多组态 Dirac-Fock 广义平均模型 (MCDF-EAL) 计算了 58 《 Z 《 71 的 2p⁵3s、2p⁵3p 和 2p⁵3d 组态的各 27 条精细结构能级,以及其作为等离 子体激光工作物质所可能发射出的激光波长值。

关键词: 相对论多组态,精细结构能级,跃迁波长

一、引言

真空紫外和软 X 射线短波激光的产生, 将引起自然科学、工程技术、遗传和生命科 学、空间科学与技术等领域有阶段性的突破。 由此,世界各工业发达国家都致力于研究 开发等离子体激光工作物质。在理论上, Elton⁽¹⁾早已指出 2p^{k-1}3p—2p^{k-1}3s 组态之 间的跃迁可能形成真空紫外、软 X 射线的短 波激光,产生这种激光的工作物质可能是高 荷电离化的 BeI-NeI 等电子序列离子。 因 此,类氛离子的理论研究和计算工作十分 活跃,如 Vinogradov等⁽²⁾计算了 MgIII、 FeXVII 离子; Feldman 等⁽³⁾计算了 Kr XXVII离子; Cogordan⁽⁴⁾等计算了TiXIII、 FeXVII、SeXXV、YXXX 离子的3s—3p跃迁波长,最近他们用Grant程序的MCDF— EAL模型计算了 $20 \leqslant Z \leqslant 54$ 离子的 $2p^53s$, 3p和 3d组态的精细结构能级和某些组态能 级之间的跃迁波长,以及TiXIII、FeXVII 离子的能级和波长^(5,6); Haar等最近又进行 了NiXIX离子的实验测定和理论计算。从 上述若干人计算结果和实验测量得知,3s—3p 跃迁的激光波长均处于短波范围之内。

本文考虑到,目前无论是在理论上还是 在实验测量上尚无 58《Z《71 类氛离子数

收稿日期:1988年1月4日。

据,所以,我们用多重组态 Dirae-Foek 方法 计算了这些元素的类氖离子精细结构能级和 某些组态的激光波长数据,以利于开展等离 子体短波激光工作物质的研究。

二、理论概述

本文用相对论多组态Dirac-Fock广义平 均模型(MCDF-EAL), 计算了 CeIL, PrL、 NdLI、PmLII、SmLIII、EuLIV、GdLV、 TbLVI、DyLVIII、HoLVIII、ErLIX、 TmLX、YbLXI、LuLXII离子的精细结构 能级和某些能级间的选择跃迁波长。 计算 使用了 Grant^[7] 程序包, 同时联接调用了 Mckenzic^[8]的 Breit、QED(包括真空极化和 自能)修正程序包。 有关计算程序的理论模 型等理论问题可参阅文献 [9] 的论述。本节 涉及的理论叙述仅与输入数据的内容有关。

原子状态 α 的总波函数可以写为

 $\psi_{a}(\Pi, J, M)$

Vmm (r)

$$=\sum_{r=1}^{\infty} C_r(\alpha) \phi_r(\nu_r, \Pi, J, M) \quad (1)$$

其中 Π 、J和 M 分别表示奇偶性、总角动量 和总磁量子数。 $\phi_r(\nu_r, \Pi, J, M)$ 为组态函 数(CSF),完全由反对称 j-j耦合下的中心 场 Dirae 旋量产生, ν_r 表示完全确定组态函 数的所有剩余的量子数。通常,物理状态 α 不能用单一组态函数描述,而用组态函数的 线性组合表示。 混合系数 $C_r(\alpha)$ 可由计算程 序得到的结果给出最可能的能级。

本文计算选用了平均核电荷分布, 其核 势 **V**_{nuc}(r)为

$$= \begin{cases} -\frac{Z}{2r} \left(\frac{r}{R_{nuc}}\right) \left[3 - \left(\frac{r}{R_{nuc}}\right)^{2}\right], \ r \leq R_{nuc}, \\ -\frac{Z}{r}, \ r > R_{nuco} \end{cases}$$
(2)

式中, R_{nuc}=2.2677×10⁻⁵A^{1/3}, A 为原子量。 广义平均模型对含有不同总角动量 J. 组态的对角哈密顿矩阵元 *H*_# 进行权重求和 并最佳化,即最佳化能级为

 $E_{opt} = 1 \cdot [\sum_{s} W_{s}]^{-1} \cdot \sum_{r} W_{r} H_{rr}$ (3) 其中 W,见文献[7]。式中权重因子 W_{s}=2J_{s} +1,于是,每个组态的权重与 $|J_{s}M_{s}\rangle$ 的状态 数相符。

在计算中,(1)式中的混合系数取决于组态的选择,对于某些能级,如能级 $3p^{1}S_{0}$ 和 $3p^{3}S_{1}$,受 $2s2p^{6}3s$ 组态的 ${}^{1}S_{0}$ 和 ${}^{3}S_{1}$ 态影响很大。因此,本文考虑了多重组态间的相互作用,在满足组态混合宇称奇偶性的条件下, 在计算 $2p^{5}3s$ 组态的能级时,混入 $2p^{5}3d$ 、 $2s2p^{6}3p$ 组态;计算 $2p^{5}3p$ 组态时混入 $2p^{6}$ 、 $2s2p^{6}3d$ 和 $2s2p^{6}3s$ 组态;计算 $2p^{5}3d$ 组态时 混入 $2p^{5}3s$ 和 $2s2p^{6}3p$ 组态;计算 $2p^{5}3d$ 组态时 混入 $2p^{5}3p$ 、 $2s2p^{6}3s$ 和 $2s2p^{6}3d$ 组态;上述的 组态混合比文献[5]的多。

三、计算结果与讨论

在表1中,列出了58 < Z < 71 元素的类 氛离子广义平均模型的 2p⁵3s、2p⁵3p和2p⁵3d 组态 *j*-*j* 耦合的相对于基态 2p⁶ ¹S₀ 的理论 计算精细结构能级值。能量单位为波数 em⁻¹。表中给出的组态能级符号除按光谱学 惯例,用 *LS* 光谱项表示之外,还加标了*j*-*j* 耦合关系符号予以标识。

由于目前高离化态较重的稀土元素实验 技术还存在一定困难,上述理论计算的能级 值尚无实验数据与之对比。但文献[4]和[10] 表明理论计算值与实验值符合很好。

本文计算的某些组态能级跃迁的波长值 列于表 2。从波长的数据可以看出,当原子 序数增加时,其对应的能级跃迁波长向更短 的方向变化,且跃迁波长处在超真空紫外 (1~10 nm)区内。

本文计算中,多重组态混合相互作用的 效果,可从各组态对本征矢量贡献的份额得 知,如在 ErLIX 离子的¹P₁3p(1/2, 1/2)₁能

LS	谱项符号 J-J	总量子数 J	Ce Į L	PrL	NdLI	PmLII
³ P ₂ ³ P ₁ ¹ P ₁ ³ P ₀	$\begin{array}{cccc} 3s(3/2, & 1/2) \\ 3s(3/2, & 1/2) \\ 3s(1/2, & 1/2) \\ 3s(1/2, & 1/2) \\ 3s(1/2, & 1/2) \end{array}$	2 1 1 0	39780476 39731082 43463626 43434057	$\begin{array}{r} 41245506\\ 41296039\\ 42571047\\ 45242789\end{array}$	$\begin{array}{r} 42785689\\ 42837369\\ 47123138\\ 47095584\end{array}$	$\begin{array}{r} 44351365\\ 44404202\\ 49020223\\ 48993054\end{array}$
${}^{3}S_{1}$ ${}^{3}D_{2}$ ${}^{3}D_{3}$ ${}^{3}D_{1}$ ${}^{1}D_{2}$ ${}^{3}P_{0}$ ${}^{1}P_{1}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$ ${}^{1}S_{0}$	$\begin{array}{c} 3p(3/2, \ 1/2)\\ 3p(3/2, \ 1/2)\\ 3p(3/2, \ 3/2)\\ 3p(1/2, \ 1/2)\\ 3p(1/2, \ 3/2)\\ 3p(1/2, \ 1/2)\\ 3p(1/2, \ 1/2)\\ \end{array}$	1 2 3 1 2 0 1 1 2 0	$\begin{array}{r} 40562485\\ 40581358\\ 41545017\\ 41545793\\ 41469146\\ 41951087\\ 44257773\\ 45249:87\\ 45249:87\\ 45277110\\ 44545935 \end{array}$	$\begin{array}{r} 42098041\\ 42116690\\ 43161044\\ 43161915\\ 43236961\\ 43577678\\ 46086555\\ 47158737\\ 47187982\\ 46380691\end{array}$	$\begin{array}{r} 43659593\\ 43678012\\ 44808245\\ 44809223\\ 44885970\\ 45235474\\ 47959593\\ 49117319\\ 49148317\\ 48259854\end{array}$	$\begin{array}{r} 45246920\\ 45265101\\ 46486652\\ 46487750\\ 46566204\\ 46924514\\ 49877544\\ 51125979\\ 51150026\\ 50184082 \end{array}$
${}^{3}P_{0}$ ${}^{3}P_{1}$ ${}^{1}P_{2}$ ${}^{3}F_{2}$ ${}^{3}F_{3}$ ${}^{3}F_{4}$ ${}^{1}F_{3}$ ${}^{1}D_{2}$ ${}^{3}D_{1}$ ${}^{3}D_{2}$ ${}^{3}D_{3}$ ${}^{3}D_{3}$ ${}^{1}P_{1}$	$\begin{array}{c} 3d(3/2, \ 3/2)\\ 3d(3/2, \ 3/2)\\ 3d(3/2, \ 5/2)\\ 3d(3/2, \ 5/2)\\ 3d(3/2, \ 3/2)\\ 3d(3/2, \ 5/2)\\ 3d(3/2, \ 5/2)\\ 3d(3/2, \ 5/2)\\ 3d(1/2, \ 3/2)\\ 3d(1/2, \ 5/2)\\ 3d(1/2, \ 5/2)\\ 3d(1/2, \ 5/2)\\ 3d(1/2, \ 3/2)\\ \end{array}$	0 1 2 2 3 4 3 2 1 2 3 1	$\begin{array}{r} 43490120\\ 42544349\\ 42805251\\ 42609784\\ 455.074\\ 42267277\\ 42866391\\ 46265662\\ 43046995\\ 46500260\\ 46524580\\ 46415621\end{array}$	$\begin{array}{r} 44126824\\ 44182788\\ 44462516\\ 44248759\\ 44208305\\ 44423495\\ 44524971\\ 48197612\\ 44710786\\ 48451836\\ 48451836\\ 48476519\\ 48348687\\ \end{array}$	$\begin{array}{r} 45794800\\ 45852503\\ 46152245\\ 45918989\\ 45877072\\ 46112153\\ 46216009\\ 50179113\\ 46406361\\ 50454178\\ 50479208\\ 50330974 \end{array}$	$\begin{array}{r} 47494085\\ 47553529\\ 47874524\\ 47620509\\ 47577108\\ 47833337\\ 47932586\\ 52211079\\ 48134097\\ 52508252\\ 52533614\\ 52363274\\ \end{array}$
LS	J_J	J	SmLIII	EuLIV	Galv	、续 TbLVI
³ P ₂ ³ P ₁ ¹ P ₁ ³ P ₀	$\begin{array}{c} 3s(3,2,\ 1/2)\\ 3s(5/2,\ 1/2)\\ 3s(1/2,\ 1/2)\\ 3s(1/2,\ 1/2)\\ 3s(1/2,\ 1/2)\end{array}$	2 1 1 0	45942363 45996368 50962898 50935931	47558363 47613546 52951729 52924850	49199187 49255560 54897476 54960612	50364482 50922055 57070794 57043897
${}^{3}S_{1}$ ${}^{3}D_{2}$ ${}^{3}D_{3}$ ${}^{3}D_{1}$ ${}^{1}D_{2}$ ${}^{3}P_{0}$ ${}^{1}P_{1}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$ ${}^{1}S_{0}$	$\begin{array}{c} 3p(3/2, \ 1/2)\\ 3p(3/2, \ 1/2)\\ 3p(3/2, \ 3/2)\\ 3p(1/2, \ 3/2)\\ 3p(1/2, \ 3/2)\\ 3p(1/2, \ 1/2)\\ 3p(1/2, \ 1/2)\\ \end{array}$	1 2 3 1 2 0 1 1 2 0	$\begin{array}{r} 46859804\\ 46877738\\ 48196307\\ 48197538\\ 48277706\\ 48644842\\ 51841091\\ 53185565\\ 53221056\\ 52154062\\ \end{array}$	$\begin{array}{r} 48497999\\ 48515676\\ 49937242\\ 49938617\\ 50020508\\ 50396495\\ 53850943\\ 55296929\\ 55335396\\ 54170504 \end{array}$	$\begin{array}{c} 50161268\\ 50178678\\ 51709501\\ 51711031\\ 51794655\\ 52179521\\ 55907838\\ 57460883\\ 57503068\\ 56234149 \end{array}$	$\begin{array}{c} 51849344\\ 51866474\\ 53513116\\ 53514812\\ 53600179\\ 53993957\\ 58012544\\ 59678184\\ 59725142\\ 58345767\\ \end{array}$
${}^{3P_{0}}_{3P_{1}}$ ${}^{3P_{1}}_{3F_{2}}$ ${}^{3F_{2}}_{3F_{3}}$ ${}^{3F_{4}}_{1F_{3}}$ ${}^{1}D_{2}$ ${}^{3}D_{1}$ ${}^{3}D_{2}$ ${}^{3}D_{2}$	$\begin{array}{c} 3d(3/2, \ 3/2)\\ 3d(3/2, \ 3/2)\\ 3d(3/2, \ 5/2)\\ 3d(3/2, \ 5/2)\\ 3d(3/2, \ 3/2)\\ 3d(3/2, \ 3/2)\\ 3d(3/2, \ 5/2)\\ 3d(1/2, \ 5/2)\\ 3d(1/2,$	0 1 2 3 4 3 2 3 4 3 2 1 2 2	49224726 49285009 49629445 49353363 49308459 49587140 49695800 54294460 49894227 54617057	$\begin{array}{c} 50986757\\ 51042673\\ 51417093\\ 51117587\\ 51071155\\ 51373648\\ 51484734\\ 56430246\\ 51686908\\ 56775637\\ 56775637\\ 5001217\\ \end{array}$	$\begin{array}{c} 52780229\\ 52844869\\ 53237571\\ 52913229\\ 52865246\\ 53192963\\ 53506492\\ 58619465\\ 53512286\\ 58991073\\ \end{array}$	$\begin{array}{c} 54605170\\ 54671521\\ 55090957\\ 54740317\\ 54690758\\ 55045165\\ 55161154\\ 60863180\\ 55370469\\ 61263484\\ 61263484\end{array}$

表1 58 \leq Z \leq 71 类氖离子的相对基态 $2p^{61}S_0$ 的能级(cm⁻¹)

		Casa In the				~	
	LS	J– J	J	DyLVII	HoLVIII	ErLIX	
	⁸ P ₂	3s(3/2, 1/2)	2	52554042	54267536	56904673	
	³ P ₁	3s(3/2, 1/2)	1	52612827	54327544	56065918 .	
	$^{1}P_{1}$	3s(1/2, 1/2)	1	59202525	61383444	63614411	
	³ P ₀	3s(1/2, 1/2)	0	59175561	61356393	63587259	
	3.8.	2n/2/9 1/9		59561065	55909945	57050609	
	3D.	3p(3/2, 1/2) 3n(3/9, 1/2)	1	53579909	00298840 55915979	57075006	
	370	3n(3/2, 1/2)	2	55949194	57914500	50119590	
	SD1	3n(3/2, 3/2)	1	55350006	57216650	59114786	
	1D.	3p(3/2, 3/2)	2	55437172	57305537	59205451	
	3P0	3p(3/2, 3/2)	õ	55839851	57717245	59626184	
	1P1	3p(1/2, 1/2)	1	60165857	62368609	64621663	
	⁸ P ₁	3p(1/2, 3/2)	1	61949414	64274868	66654222	
	³ P ₂	3p(1/2, 3/2)	2	62002725	64336973	66729088	
	¹ S ₀	3p(1/2, 1/2)	0	60506159	62716159	64976633	
	8Po	3d(3/2, 3/2)	0	56461635	58349662	60269259	
	3P1	3d(3/2, 3/2)	ĩ	56529683	58419390	60340684	
	\$P2	3d(3/2, 5/2)	2	56977364	58896883	60849617	
	³ <i>F</i> ₂	3d(3/2, 3/2)	2	56598907	58489036	60410749	
	3F'3	3d(3/2, 3/2)	3	56547744	58436242	60356250	
	3F4	3d(3/2, 5/2)	4	56930366	58848557	60800142	
	1F3 1D	3d(3/2, 5/2)	3	57048831	58969617	60923614	
	$^{1}D_{2}$	3d(1/2, 3/2)	2	03102508	60105749	679320:8	
	370-	3d(3/4, 3/2) 3d(1/9, 5/9)	1 9	62501043	09180744 65077064	68494500	
	3D.	3d(1/2, 5/2)	3	63617830	66004988	68451754	
	$1P_1$	3d(1/2, 3/2)	ĩ	63291849	65624157	67995762	
-		a set in a set of the set	······································	51157.90 102	13. 11 15 242 1	续	
	LS	J–J	J	TmLX	YbLXI	LuLXII	
	3P.	38(3/2, 1/2)	2	57765127	59548630	61354744	
	3P1	38(3/2, 1/2)	ī	57827620	59612384	61419774	
	1P1	3s(1/2, 1/2)	1	65896304	68230101	70616690	
	³ P ₀	3s(1/2, 1/2)	0	65869045	68202731	70589210	
	8.9.	3n(3/2, 1/2)	1	58844197	60652045	62482890	
	3D2	3p(3/2, 1/2)	2	58860077	60667576	62498056	
	\$D3	3p(3/2, 3/2)	3	61.041991	63003023	64995664	
	\$D1	3p(3/2, 3/2)	1	61044455	63005706	64998574	
	1D2	3p(3/2, 3/2)	2	61136911	63099966	65094653	
	3P0 170	3p(3/2, 3/2)	0	66025017	633338883	00042738	
	3P.	3p(1/2, 1/2) 3n(1/2, 2/2)	1	60086040	71567167	74093495	
	3Po	3p(1/2, 3/2)	2	6918 323	71691976	74265412	
	1S0	3p(1/2, 1/2)	õ	67288486	69652656	72070126	
				117.208			
	8P0	3d(3/2, 3/2)	0	62220579	64203563 64978908	66218287 66204521	
	SP1	3d(3/2, 3/2) 3d(3/2, 5/2)	1 2	62293608	64855140	66908157	
	SF2	3d(3/2, 3/2) 3d(3/2, 3/2)	2	62364089	64349108	66365842	
	SF2	3d(3/2, 3/2)	3	62307945	64291241	66306222	
	3F4	3d(3/2, 5/2)	4	62784923	64803110	66854804	
	1_{F_3}	3d(3/2, 5/2)	3	62910925	64931660	66985921	
	1D2	3d(1/2, 3/2)	2	70405977	72939806	75535531	
	81)1 87)	3d(3/2, 5/2)	1	03133623	0010/074	76135208	
	*D2 \$70-	3a(1/2 - 5/2) 3d(1/2 - 5/2)	2	70951994	73529416	76163105	
	13	04(1/2, 0/2)	0	10000114	50101101	FERRICIE	
	1P.	3d(1/2, 3/2)	1	70689390	73194424	75771947	

续

Ions	${}^{3}P_{1}3s {}^{1}D_{2}3p$	¹ P ₁ 3s ³ P ₂ 3p	$^{3}D_{3}3p^{3}F_{2}3d$	$^{3}D_{2}3p^{3}F_{3}3d$	
 Ce IL	5.2964	5.5142	9.3917	5.0266	
Pr L	5.1521	5.2166	9.1935	4.7810	
Nd LI	4.8813	4.9378	9.0029	4.5474	
Pm LII	4.6253	4.6755	8.8194	4.3252	
Sm LIII	4.3834	4.4284	3.6426	4.1140	
Eu LIV	4.1546	4.1952	8.4720	3.9131	
Gd LV	3.9384	3.9752	8.3075	3.7222	
Tb LVI	3.7339	3.7674	8.1486	3.5407	
Dy LVII	3.5406	3.5711	7.9950	3.3682	
Ho LVIII	3.3579	3.3858	7.8465	3.2042	
Er LIX	3.1852	3.2106	7.7028	3.0484	
Tu LX	3.0218	3.0450	7.5637	2.9003	
Yb LXI	2.8673	2.8886	7.4289	2.7569	
Lu LXII	2.7212	2.4407	7.2983	2.6259	

表2 类氖离子某些31-31'的跃迁波长计算值(nm)

级计算中, ${}^{1}P_{1}3p(1/2, 1/2)_{1}$ 态的自身贡献分 量为9.9956×10⁻¹;态 $3S_{1}3p(3/2, 1/2)_{1}$ 为 $3.37×10^{-4}$;态 ${}^{3}D_{1}3p(3/2, 3/2)_{1}$ 的贡献为 $8.53×10^{-3}$; ${}^{3}P_{1}3p(1/2, 3/2)_{1}$ 的贡献为 $1.21×10^{-3}$;而态 $2s2p^{6}3p(1/2, 1/2)_{1}$ 的贡献 为 $2.27×10^{-2}$, $2s2p^{6}3p(1/2, 3/2)_{1}$ 的贡献 为 $1.696×10^{-2}$,可知,组态 $2s2p^{6}3p$ 的贡献 高于 ${}^{3}S_{1}3p$ 、 ${}^{3}D_{1}3p$ 、 ${}^{3}P_{1}3p1\sim 2$ 个数量级。可 见,多重组态混合作用是明显的。这与文献 [4, 6]的结论是一致的。

综上所述, MCDF-EAL 模型计算类氛 离子精细结构能级和跃迁波长是一种快速省 时的方法, 在考虑多重组态混合情况下, 计 算结果、尤其是波长数据, 与实验值符合精 度很高。因此许多文献^[4,5,10]的计算都使用 MCDF-EAL 模型。其次, 从我们的计算结 果得知,稀土元素的类氖离子,其跃迁波长届 于超真空紫外区,因此肯定会有比 FeXVII、 YXXX 更短波长的相干辐射输出。

本文计算工作是在 IBM 4381 计算机上

完成的。在此,对给我们计算工作以大力支 持和帮助的东北电力试验研究院计算中心致 以诚挚的谢意!

参考文献

- 1 R. C. Elton, Appl. Opt., 14 (1), 97(1975)
- 3 A. V. Vinogradov et al., Sov. J. Quant. Electr., 10 (6), 754(1980)
- 3 U. Feldman et al., J. Appl. Phys., 54 (5), 2188 (1983)
- J. A. Cogordan and S. Lunell et al., Phys. Rev.
 A. 32(3), 1885(1985)
- 5 J. A. Cogordan and S. Lunell et al., Physica Scripta, 33(5), 406(1985)
- 6 J. A. Cogordan and S. Lunell et al., Physica Scripta, 31(6), 545(1985)
- 7 I. P. Grant et al., Comput. Phys. Commun., 21 (2), 207 (1980)
- 8 B. J. Mckenzie et al., Comput. Phys. Commun., 21(2), 233(1980)
- 9 I. P. Grant, Adv. Phys. 19 (82), 747(1970)
- 10 R. R. Haar and L. J. Curtis et al., Physica Soripta, 35(3), 296(1987)